skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nieber, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In hydrology, modeling streamflow remains a challenging task due to the limited availability of basin characteristics information such as soil geology and geomorphology. These characteristics may be noisy due to measurement errors or may be missing altogether. To overcome this challenge, we propose a knowledge-guided, probabilistic inverse modeling method for recovering physical characteristics from streamflow and weather data, which are more readily available. We compare our framework with state-of-the-art inverse models for estimating river basin characteristics. We also show that these estimates offer improvement in streamflow modeling as opposed to using the original basin characteristic values. Our inverse model offers a 3% improvement in R2 for the inverse model (basin characteristic estimation) and 6% for the forward model (streamflow prediction). Our framework also offers improved explainability since it can quantify uncertainty in both the inverse and the forward model. Uncertainty quantification plays a pivotal role in improving the explainability of machine learning models by providing additional insights into the reliability and limitations of model predictions. In our analysis, we assess the quality of the uncertainty estimates. Compared to baseline uncertainty quantification methods, our framework offers a 10% improvement in the dispersion of epistemic uncertainty and a 13% improvement in coverage rate. This information can help stakeholders understand the level of uncertainty associated with the predictions and provide a more comprehensive view of the potential outcomes. 
    more » « less
  2. Shekhar, Shashi; Zhou, Zhi-Hua; Chiang, Yao-Yi; Stiglic, Gregor (Ed.)
    Rapid advancement in inverse modeling methods have brought into light their susceptibility to imperfect data. This has made it imperative to obtain more explainable and trustworthy estimates from these models. In hydrology, basin characteristics can be noisy or missing, impacting streamflow prediction. We propose a probabilistic inverse model framework that can reconstruct robust hydrology basin characteristics from dynamic input weather driver and streamflow response data. We address two aspects of building more explainable inverse models, uncertainty estimation (uncertainty due to imperfect data and imperfect model) and robustness. This can help improve the trust of water managers, handling of noisy data and reduce costs. We also propose an uncertainty based loss regularization that offers removal of 17% of temporal artifacts in reconstructions, 36% reduction in uncertainty and 4% higher coverage rate for basin characteristics. The forward model performance (streamflow estimation) is also improved by 6% using these uncertainty learning based reconstructions. 
    more » « less
  3. The volume of a lake is a crucial component in understanding environmental and hydrologic processes. The State of Minnesota (USA) has tens of thousands of lakes, but only a small fraction has readily available bathymetric information. In this paper we develop and test methods for predicting water volume in the lake-rich region of Central Minnesota. We used three different published regression models for predicting lake volume using available data. The first model utilized lake surface area as the sole independent variable. The second model utilized lake surface area but also included an additional independent variable, the average change in land surface area in a designated buffer area surrounding a lake. The third model also utilized lake surface area but assumed the land surface to be a self-affine surface, thus allowing the surface area-lake volume relationship to be governed by a scale defined by the Hurst coefficient. These models all utilized bathymetric data available for 816 lakes across the region of study. The models explained over 80% of the variation in lake volumes. The sum difference between the total predicted lake volume and known volumes were <2%. We applied these models to predicting lake volumes using available independent variables for over 40,000 lakes within the study region. The total lake volumes for the methods ranged from 1,180,000- and 1,200,000-hectare meters. We also investigated machine learning models for estimating the individual lake volumes and found they achieved comparable and slightly better predictive performance than from the three regression analysis methods. A 15-year time series of satellite data for the study region was used to develop a time series of lake surface areas and those were used, with the first regression model, to calculate individual lake volumes and temporal variation in the total lake volume of the study region. The time series of lake volumes quantified the effect on water volume of a dry period that occurred from 2011 to 2012. These models are important both for estimating lake volume, but also provide critical information for scaling up different ecosystem processes that are sensitive to lake bathymetry. 
    more » « less
  4. Machine Learning is beginning to provide state-of-the-art performance in a range of environmental applications such as streamflow prediction in a hydrologic basin. However, building accurate broad-scale models for streamflow remains challenging in practice due to the variability in the dominant hydrologic processes, which are best captured by sets of process-related basin characteristics. Existing basin characteristics suffer from noise and uncertainty, among many other things, which adversely impact model performance. To tackle the above challenges, in this paper, we propose a novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse framework to extract system characteristics from driver(input) and response(output) data. This first-of-its-kind framework achieves robust performance even when characteristics are corrupted or missing. We evaluate the KGSSL framework in the context of stream flow modeling using CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) which is a widely used hydrology benchmark dataset. Specifically, KGSSL outperforms baseline by 16% in predicting missing characteristics. Furthermore, in the context of forward modelling, KGSSL inferred characteristics provide a 35% improvement in performance over a standard baseline when the static characteristic are unknown. 
    more » « less
  5. Abstract Infiltration stormwater control measures (SCMs) have the potential to contribute towards mitigating the effects of urbanization on downstream receiving waters. Infiltration SCMs are most often successful when the in‐situ saturated hydraulic conductivity (Ksat) is well characterized. In this paper numerical solutions of the Richards’ equation are used to quantify the bias of seven infiltration measurement methods, removing natural variability and random error from the analysis. The methods evaluated in this study include the double ring infiltrometer, Saturo infiltrometer, modified Philip–Dunne infiltrometer, Turf‐Tec IN2‐W infiltrometer, USBR 7300‐89 well permeameter, Philip–Dunne permeameter, and the Guelph permeameter. Seven homogenous, isotropic soil textures were simulated at four initial soil moistures for the seven methods, resulting in a total of 196 simulations. The dimensionless bias is defined as the “measured”Ksatdetermined by a given method divided by theKsatinput to the numerical experiments. The “measured”Ksatis in quotations to identify the measurement occurs in a numeric experiment rather than in a physical experiment. In sand through silt loam soils that are typical of infiltration SCMs, the simulated methods have a bias in the range of 0.7–6.2. The Turf‐Tec was the only infiltrometer that produced a bias >2.5 for these soils. Initial effective saturation had a minimal contribution to bias for most methods. Methods that rely on a one‐dimensional (1D) flow assumption consistently overestimated theKsat. Borehole methods produced results with bias similar to surface methods. Long duration methods did not consistently produce more accurate results than short duration methods. 
    more » « less
  6. Abstract Streamflow prediction is a long‐standing hydrologic problem. Development of models for streamflow prediction often requires incorporation of catchment physical descriptors to characterize the associated complex hydrological processes. Across different scales of catchments, these physical descriptors also allow models to extrapolate hydrologic information from one catchment to others, a process referred to as “regionalization”. Recently, in gauged basin scenarios, deep learning models have been shown to achieve state of the art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical descriptors and weather forcing data. However, these physical descriptors are by their nature uncertain, sometimes incomplete, or even unavailable in certain cases, which limits the applicability of this approach. In this paper, we show that by assigning a vector of random values as a surrogate for catchment physical descriptors, we can achieve robust regionalization performance under a gauged prediction scenario. Our results show that the deep learning model using our proposed random vector approach achieves a predictive performance comparable to that of the model using actual physical descriptors. The random vector approach yields robust performance under different data sparsity scenarios and deep learning model selections. Furthermore, based on the use of random vectors, high‐dimensional characterization improves regionalization performance in gauged basin scenario when physical descriptors are uncertain, or insufficient. 
    more » « less